Homework 5, due 3/27

- 1. Let $\mathcal{U} = \{U_0, U_1\}$ denote the usual open cover of \mathbf{P}^1 . Compute the cohomology group $\check{H}^1(\mathcal{U}, \mathcal{O}(-1))$.
- 2. Let X be a complex manifold, and $Y \subset X$ a codimension-one complex submanifold.
 - (a) Show that X has a cover with open sets U_{α} , such that there are holomorphic functions $f_{\alpha} \in \mathcal{O}(U_{\alpha})$ satisfying $Y \cap U_{\alpha} = f_{\alpha}^{-1}(0)$, and in addition we can choose the f_{α} such that the differential df_{α} does not vanish along $Y \cap U_{\alpha}$. In this case for any α, β we have $f_{\alpha}/f_{\beta} :$ $U_{\alpha} \cap U_{\beta} \to \mathbb{C}^*$.
 - (b) Define a line bundle L over X by the transition functions $\phi_{\alpha\beta} = f_{\alpha}/f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$. Show that L admits a global holomorphic section s such that $Y = s^{-1}(0)$.
 - (c) Show that the normal bundle $\mathcal{N}_{Y|X}$ of Y in X is isomorphic to the restriction of the bundle L to Y.